Saamir Baker Algebra 2 BM

Fish Bowl Graph

Introduction

When I first started this project, I sat down in class and thought "Why me?" This project was very well going to be the death of me, until I realized it was more tedious than it was hard. My first step was thinking of a theme that would be easy to create with my group. It took us a few days but we knew aquatic life was the way to go. Then after looking at my grade, I knew I needed to do as much work as possible to get an A on this benchmark. So here it is, all it took was 1000 tears to do it.

Lines

My graph consists of eight lines, let's take a look at them!

All of the slopes to my lines in this graph are undefined.

<u>Circles</u>

The ten circles in my graph are fin flapping tastic!

Standard equation for circles:

$$(x-h)^2 + (y-k)^2 = r^2$$

The Equation	The Center	The Radius
(x-0) ² +(y-103) ² =9000	(0, -103)	√9000

The Equation	The Center	The Radius
(x+14) ² +(y-70) ² =1	(-14, 70)	1

 The Equation
 The Center
 The Radius

 (x+14)^2+(y-70)^2=7
 (-14, 70)
 √7

The Equation	The Center	The Radius
(x+5) ² +(y-80) ² =20	(-5, 80)	$\sqrt{20}$

The Equation	The Center	The Radius
(x-7) ² +(y-120) ² =1	(7, 120)	1

The Equation	The Center	The Radius
(x-7) ² +(y-120) ² =9	(7, 120)	√9

The Equation	The Center	The Radius
(x+8) ² +(y-127) ² =20	(-8, 127)	$\sqrt{20}$

Circle #8:

The Equation	The Center	The Radius
(x-2) ² +(y-137) ² =20	(2, 137)	$\sqrt{20}$

The Equation	The Center	The Radius
(x+8) ² +(y-147) ² =20		

Circle #10:

The Equation	The Center	The Radius
$(x-2)^2+(y-157)^2=20$	(2, 157)	$\sqrt{20}$

<u>Hyperbola</u>

Are you hyper to feast your eyes on this table hyperbola?

Standard Equation (Vertical Hyperbolas):

$$\frac{(y-k)^2}{a^2} - \frac{(y-h)^2}{b^2} = 1$$

Standard equation	What is it?	Vertex	Foci	Asymptotes	A, B, C	Center
$\frac{(y+20)^2}{10} - \frac{(y-0)^2}{8} = 1$	Vertical	$(0,-20+\sqrt{10})$ $(0,-20-\sqrt{10})$	(0,-7.2) ど (0,-32.8)	$y = -\frac{\sqrt{10}}{\sqrt{8}} x - 20$	A: $\sqrt{10}$, B: $\sqrt{8}$, C: $\sqrt{164}$	(0, -20)

Parabola

Look at the amazing parabolas the fish have on them!

Standard equation:

 $y=ax^2+bx+c$

Vertex	Roots
(-44.5, 70)	No possible roots

Vertex	Roots
(-34, 70)	No possible roots

Parabola #3:

Vertex	Roots
(30, 120)	No possible roots

Ellipses

The math term not the moon term you Twilight fan!

Standard form (Horizontal):

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = \mathbf{1}$$

Standard equation	What is it?	Vertices	Co-Vertices	Center
$\frac{(x-20)^2}{1920} + \frac{(y-120)^2}{192} = 1$	Horizontal	(20+√1920 ,120) & (20-√192 ,120)		(20,120)

Standard equation	What is it?	Vertices	Center
$\frac{(x+27)^2}{1920} + \frac{(y-170)^2}{192} = 150$	Horizon tal	(27- √1920 ,170) & (27- √192 ,170)	(-27,70)

Ellipse #3:

Standard equation	What is it?	Vertices	Center
$\frac{(x-0)^2}{70} + \frac{(y-10)^2}{02} = 70$	Horizontal	$(0+\sqrt{70})$,10) & (10+) $\sqrt{-0.02}$,10)	(0,10)

Standard equation	What is it?	Vertices	Center
$\frac{(x-0)^2}{70} + \frac{(y-10)^2}{07} = 70$	Horizontal	$(0+\sqrt{70},10)$ & $(10+\sqrt{07},10)$	(0, 10)

Standard equation	What is it?	Vertices	Center
$\frac{(x-0)^2}{100} + \frac{(y-0)^2}{4} = 9$	Horizontal	$(0+\sqrt{100},0)$ & $(0+\sqrt{4},0)$	(0,0)

Standard equation	What is it?	Vertices	Center
$(x-0)^2/100-(y-195)^2/9$ =9		$(0+\sqrt{100},-195)$ & $(0+\sqrt{.9},-195)$	(0,195)