Hello! Welcome to our calculus benchmark. This qfjgoogroduction to integrals, and methods to approximate the area under a curve. The assignment was to select a set of data from any real-world situation with an independent and dependent variable, the dependent variable being a rate. We chose acceleration, the relationship between velocity and time, using a set of data collected from a 2010 Artega GT. Below is a v/t chart and graph.
V mph
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
T
sec
1.3
1.7
2
2.4
3
3.5
4
4.8
5.5
6.3
7.2
8.3
11
14
18
Now that we can visualize our data in the form of a graph, we can find the area under the curve over a given interval to calculate distance. Because a distance/time function is the derivative function of velocity/time function, we can use integrals to find how far the car has travelled, by using a t/v graph (in this case, the graph is actually TIME as a function of VELOCITY, due to the fact that time is a fixed, independent variable). We can approximate the area by using trapezoids and rectangles.